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1. 

The present study deals with the determination of the fundamental frequency of
transverse vibration of the plate system depicted in Figure 1 for two types of
boundary conditions at the outer edge: simply supported and clamped. Apparently
no solutions are available in the open literature [1]. The case of circular, solid
and annular plates with a concentric circular support has been treated rather
recently [2, 3].

This study deals with the solution of the title problem using the optimized
Rayleigh–Ritz method [4] coupled with the conformal mapping approach which
allows for the use of simple co-ordinate functions which, in the transformed plane,
satisfy the essential boundary conditions of the mechanical system [5]. In the case
of a square plate an independent solution is obtained by means of the finite element
method using a very modern, efficient code [6].

2.      

—– 

The solution of the plate vibration problem is governed by the classical
functional

J(W)=D ggP

[(Wxx +Wyy )2 −2(1− n)(WxxWyy −W2
xy)] dx dy

− rhv2 ggP

W2 dx dy, (1)

subject to appropriate boundary conditions. As is well known the regular
polygonal shape of degree s is transformed onto a unit circle in the z-plane by
means of the Schwarz–Christoffel transformation (Figure 1)

z= f(z)=AsapF(z)=Asap g
C

0

dz

(1+ zs)2s, (2)

where z= x+ yi and z= j+ hi.
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Figure 1. Vibrating mechanical system under study.

The parameter As is a function of the degree of the polygon, s, and has been
tabulated in the open literature [5]. The displacement amplitude W(x, y) will be
approximated in the z-plane by means of a functional relation expressed as a
summation of polynomials and where the azimuthal variation is disregarded [5].

In the present study Wa has been expressed as

Wa =C1(a1rp + b1r2 +1)+C2(a2rp+1 + b2r2 +1)+C3(a3rp+2 + b3r2 +1) (3)

in the case of simply supported plates, where the ai’s and bi’s are determined
satisfying the essential conditions (Figure 1)

Wa (1)=Wa (r0)=0 (4)

and p is the optimization parameter [4].
On the other hand, in the case of a clamped, outer boundary the displacement

amplitude is approximated using

Wa =C1(a1rp + b1r3 + g1r2 +1)+C2(a2rp+1 + b2r3 + g2r2 +1)

+ C3(a3rp+2 + b3r3 + g3r2 +1), (5)

where the ai’s, bi’s and gi’s are evaluated by substituting each co-ordinate function
in the governing essential boundary conditions (Figure 1)

Wa (1)=W'a (1)=W(r0)=0. (6)

The value of r0 is approximately determined, when R0/ap�1 by means of the
expression [5]

r0 =R0/apAs . (7)
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In view of the fact that Wa =Wa (r), the governing functional (1) results, in the
z-plane, in

A2
sa2

p

D
J(Wa )=ggc 61+ n

2
(War2 +War /r)2

=F'(z)=2

+
1− n

2
=(War2 −War /r) e−2uiF'(z)−2War e−uiF0(z)=2

=F'(z)=4 7r dr du

−
A4

s cot4 p/s
16

V2 gge

W2
a =F'(z)=2r dr du, (8)

where

=F'(z)=2 =1/=1+ zs=4/s =1/(1+2rs cos su+ r2s)2/s, (9)

V2 = (rh/D)v2a4, ap =(a/2) cot p/s; (10, 11)

a is the side of the polygon (Figure 1).
Substituting equations (3) or (5) in equation (8) and applying the classical

Rayleigh–Ritz method one obtains a linear, homogeneous system of equations in
the Ci’s. The non-triviality condition yields a secular determinant whose lowest
root constitutes the fundamental frequency coefficient under investigation,
V1 =zrh/Dv1a2.

Figure 2. Finite element mesh for the configuration characterized by R0 /ap =0·6 in the case of
a square plate with a concentric circular support.
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T 1

Fundamental frequency coefficient V1 =zrh/Dv1a2 of the plate structural system
shown in Figure 1

Square
Outer ZXXXXXCXXXXXV

boundary Analyt. Finite element
conditions R0/ap solution solution Pentagonal Hexag.

Simply 0·1 57·94 57·64 32·22 20·76
supported 0·2 67·70 64·83 37·82 24·44

0·3 81·10 77·00 45·63 29·65
0·4 97·93 91·25 55·16 35·91
0·5 103·38 98·90 56·54 36·26
0·6 86·25 83·40 46·04 29·22

Clamped 0·1 86·85 85·10 47·95 31·09
0·2 101·13 98·11 56·16 36·53
0·3 121·36 116·33 67·75 44·21
0·4 138·38 132·31 76·28 49·32
0·5 117·35 116·72 62·77 39·93
0·6 88·89 88·98 47·25 29·96

3.   

An independent solution was obtained for the case of the square plate with a
concentric circular support, using ALGOR [6]. Figure 2 depicts the finite element
mesh for one quarter of the structural system. The number of elements varied as
a function of the complexity of the configuration. For R0/ap =0·5, for instance,
3584 elements were used and the number of nodes totalled 3641. For R0/ap =0·6
the configuration consisted of 6879 elements and 6961 nodes; see Figure 2.

4.  

Table 1 depicts values of V1 for square, pentagonal and hexagonal plates with
a concentric circular support. As it was expected, the condition at the outer
boundary does not carry significant weight as the inner support is placed closer
to the outer boundary, e.g., for R0/ap e 0·6. In the case of the square plate the finite
element results (presumably very accurate) are in reasonably good engineering
agreement with the analytical values of V1, the maximum difference being of the
order of 7% in the case of a simply supported plate, for R0/ap =0·4. One should
recall, at this point, that the natural boundary condition at the outer boundary
is not satisfied when using the co-ordinate functions defined in equation (3).
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